Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Biodiesel Permeability in Polyethylene

2012-05-22
This paper reports solubility, diffusivity and permeability data for soy and rapeseed methyl esters in polyethylene together with comparisons with methyl oleate and linoleate. These data were used to discuss the reliability of predictive models for diffusion and solubility of additive type molecules into semi-crystalline thermoplastic polymers. Presenter Emmanuel Richaud
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
In this paper we present the results of full-scale chassis dynamometer testing of two hybrid transit bus configurations, parallel and series and, in addition, quantify the impact of air conditioning. We also study the impact of using an electrically controlled cooling fan. The main trend that is noted, and perhaps expected, is that a significant fuel penalty is encountered during operation with air conditioning, ranging from 17-27% for the four buses considered. The testing shows that the series hybrid architecture is more efficient than the parallel hybrid in improving fuel economy during urban, low speed stop and go transit bus applications. In addition, smart cooling systems, such as the electrically controlled cooling fan can show a fuel economy benefit especially during high AC (or other increased engine load) conditions.
Collection

Fatigue Research and Applications, 2014

2014-04-01
This technical paper collection covers recent fatigue research, analysis, analytical tools development, and novel applications of fatigue technology in the ground vehicle industry.
Journal Article

Mechanical Response of Hybrid Laminated Polymer Nanocomposite Structures: A Multilevel Numerical Analysis

2020-10-19
Abstract The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Residual Stresses and Plastic Deformation in Self-Pierce Riveting of Dissimilar Aluminum-to-Magnesium Alloys

2018-05-08
Abstract In this work, the complex relationship between deformation history and residual stresses in a magnesium-to-aluminum self-pierce riveted (SPR) joint is elucidated using numerical and experimental approaches. Non-linear finite element (FE) simulations incorporating strain rate and temperature effects were performed to model the deformation in the SPR process. In order to accurately capture the deformation, a stress triaxiality-based damage material model was employed to capture the sheet piercing from the rivet. Strong visual comparison between the physical cross-section of the SPR joint and the simulation was achieved. To aid in understanding of the role of deformation in the riveting process and to validate the modeling approach, several experimental measurements were conducted. To quantify the plastic deformation from the piercing of the rivet, micro hardness mapping was performed on a cross-section of the SPR joint.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Optimization Approach of Turning Process of Multiwalled Carbon Nanotubes-Aluminium Oxide/Epoxy Hybrid Nanocomposites

2021-06-15
Abstract The high quality of the machined parts in a short time is a research challenge for enhancing these parts’ operating performance. Optimizing the machining operations and adequately selecting the cutting parameters can solve this challenge. Thus, this work proposes an optimization approach of the machining process parameters of epoxy hybrid nanocomposites reinforced by multiwall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3). Cutting speed (V), feed rate (F), insert nose radius, and depth of cut (D) were the machining parameters. The roundness error and surface roughness (Ra) were selected as process response control parameters. The optimization techniques such as response surface method (RSM) and grey relation analysis (GRA) with the variance of analysis (ANOVA) were involved. Forty experimental runs were performed. The RSM optimization and ANOVA results showed that the insert nose radius and F are the most significant factors that affect the Ra.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams

2018-05-08
Abstract Due to the high deformability and energy dissipation capacity of polymer foams in compression, they are used in automotive applications to mitigate mechanical impacts. The mechanical response of the foams is strongly affected by their density. Phenomenological relations have been proposed to describe the effect of foam density on their stress-strain response in compression at a fixed loading rate and the effect of loading rate at a fixed foam density. In the present work, these empirical approaches are combined allowing for the dependence of loading rate effect in compression on foam density. The minimum experimental data set for calibration of the proposed model consists of compression test results at two different loading rates of foams with two different densities.
Journal Article

Comparison Study of Malaysian Driver Seating Position in SAEJ1517 Accommodation Model

2019-04-08
Abstract A key element in an ergonomically designed driver’s seat in a car is the correct identification of driver seating position and posture accommodation. Current practice by the automotive Original Equipment Manufacturer (OEM) is to utilize the Society of Automotive Engineering (SAE) J1517 standard practice as a reference. However, it was found that utilizing such guidelines, which were developed based on the American population, did not fit well with the anthropometry and stature of the Malaysian population. This research seeks to address this issue by comparing the SAE J1517 Model against Malaysian preferred driving position. A total of 62 respondents were involved for the driver seating position and accommodation study in the vehicle driver’s seat buck mockup survey and measurements. The results have shown that the Malaysian drivers prefer to sit forward as compared to the SAE J1517 Model and have shorter posture joint angle.
Standard

Nonmetallic EGR Tubing with One or More Layers

2018-09-11
WIP
J3183
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use in exhaust gas recirculation systems Requirements in this document apply to monowall tubing (one layer construction) and multilayer tubing. The tube construction can have a straight wall configuration, a wall that is convoluted or corrugated, or a combination of each.
Standard

Diesel Exhaust Fluid (DEF) tubing with one or more layers

2018-09-11
WIP
J3184
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid carrying DEF lines for diesel engine selective catalyst reduction (SCR) after-treatment systems. Requirements in this document also apply to monowall tubing (one layer construction) and multi-layer constructions. Unless otherwise agreed to by suppliers and users this document applies to tubing for any portion of the DEF system that might operate continuously at temperatures above –40 °C and below 120 °C or for high temperature systems up to 160 °C. Maximum working pressure of 1140 kPa absolute. The tubing can be used at the peak intermittent exterior temperature up to 140 °C or 180 °C. Tubing systems supplied to this application are usually required to thaw from the frozen condition using various heating methods in operation complying with EPA requirements.
Standard

Nonmetallic Air Suspension System Tubing with One or More Layers

2018-09-11
WIP
J3185
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as pneumatic tubing in automotive air suspension lines. Requirements in this document also apply to monowall tubing (one layer construction) or multi-layer (MLT) constructions. Unless otherwise agreed to by suppliers and users this document applies to tubing for any portion of the fuel system that might operate continuously at temperatures above –40°C and below 90°C and up to a maximum working gage pressure of 1500 kPa. The tubing can be used at the peak intermittent temperature up to 115 °C with peak dynamic pressures of up to 2000 kPa. This document can apply to systems that operate at higher pressures and/or are exposed to higher temperatures with appropriate changes to the acceptance criteria within this document.
Standard

Thermoplastic Coolant Tubes

2018-09-11
WIP
J3181
Standard covers material performance requirements for extruded thermoplastic tubes used in engine coolant/water applications.
Standard

Plastic Windshield Washer Tubing

2018-09-11
WIP
J3182
This SAE Standard covers nonreinforced, extruded, plastic tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
Standard

Guidelines for Repair Process Evaluation of Fiber Reinforced Composite Bonded Structure

2014-01-29
WIP
AIR6292
The SAE Aerospace Information Report (AIR) is intended to be used as a process verification guide for evaluating implementation of key factors in bonded repair of fiber reinforced composite structure in a repair shop environment. The guide will be used in conjunction with a regulatory approved and substantiated repair, and is intended to promote consistency and reliability.
X